风电场发电功率组合预测方法研究
胡婷1,刘观起1,邵龙1,刘哲2,孙勃3
1 华北电力大学,河北 保定 071000;
2 河北省电力科学研究院,河北 石家庄 050000;
3 图们市供电分公司,吉林 延边 133100
摘 要:针对风电场发电功率的短期预测,阐述了组合预测的方法原理。分别建立基于相空间重构的RBF 神经网络模型、时间序列模型、支持向量机模型三种单项预测模型,并在此基础上确立加权系数,得到了两个组合预测模型。预测结果显示组合预测较单项预测的效果有了很大的改善,具有实际意义和应用价值。
关键词: 神经网络;时间序列;支持向量机;组合预测
中图分类号:TM614 文献标识码:A 文章编号:1007-3175(2013)05-0023-05
Study on Combination Model of Wind Power Generation Prediction
HU Ting1, LIU Guan-qi1, SHAO Long1, LIU Zhe2, SUN Bo3
1 North China Electrical Power University, Baoding 071000, China;
2 Electric Power Research Institute of Hebei Province, Shijiazhuang 050000, China;
3 Tumen Power Supply Subsidiary, Yanbian 133100, China
Abstract: Aiming at short-term predication of wind generation power, this paper described the method and principle of combined prediction. This paper constructed three kinds of single predicting models, including radial basis function (RBF) neural network model based on phase space reconstruction, time series model and support vector machine model, and on this basis, weighing coefficients were determined to get two groups of combined prediction models. The predicting result shows that the effect of combined prediction is improved more than that of single prediction, with practical significance and applicable value.
Key words: neural network; time series; support vector machine; combined prediction
参考文献
[1] 雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003,27(8):84-88.
[2] 顾为东.大规模非并网风电系统开发与应用[J].电力系统自动化,2008,32(19):1-4.
[3] 舒进,张保会,李鹏,等.变速恒频风电机组运行控制[J].电力系统自动化,2008,32(16):89-93.
[4] Billinton R, Guang Bai. Generating capacity adequacy associated with wind energy[J]. IEEE Transactions on Energy Conversion, 2004,19(3):641-646.
[5] Karki R, Hu PO. Wind power simulation model for reliability evaluation[C]//Proceedings of Canadian Conference on Electrical and Computer Engineering, 2005:541-544.
[6] 杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
[7] 丁明,张立军,吴义纯. 基于时间序列分析的风电场风速预测模型[J]. 电力自动化设备,2005,25(8):32-34.
[8] Fonte P M, Quadrado J C. ANN approach to WECS power forecast[C]//Proceedings of IEEE Conference on Emerging Technologies and Factory Automation, 2005, 1:1069-1072.
[9] Rohrig K, Lange B. Application of wind power prediction tools for power system operations[C]//Proceedings of IEEE Power Engineering Society General Meeting, 2006:5.
[10] Pinson P, Kariniotakis G N. Wind power forecasting using fuzzy neural networks enhanced with online prediction risk assessment[C]//IEEE Power Technology Conference Proceedings, 2003, 2:8.
[11] Karki R, Hu PO, Billinton R. A simplified wind power generation model for reliability evaluation[J].IEEE Transactions on Energy Conversion, 2006, 21(2):533-540.
[12] Mohanders M A, Halawani T O, Rehman S, Hussain Ahmed A. Support vector machines for wind speed prediction[J]. Renewable Energy, 2004,29(16):939-947.
[13] Salcedo-Sanz Sancho, Ortiz-Garcia Emilio G, Perez-Bellido Angel M, Portilla-Figueras Antonio, Prieto Luis. Short term wind speed prediction based on evolutionary support vector regression algorithms[J]. Expert Systems with Applications, 2011, 38(4):4052-4057.
[14] 牛东晓,曹树华.电力负荷预测技术及其应用[M].北京:中国电力出版社,2006.
[15] 张国强, 张伯明. 基于组合预测的风电场风速及风电机功率预测[J]. 电力系统自动化,2009,33(18):92-95.