(School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China)
Abstract: Accurate prediction of the residual electrical life of AC contactors is of great significance in ensuring the safety of the electrical system. Through accelerated electrical lifetime testing of AC contactors, completing electrical lifespan data of test samples were acquired.Wavelet transform method was employed to determine the starting and ending moments of arcing in the breaking phase of an AC contactor,and the arcing time, arcing energy and average arcing power in the time domain of the arcing signal were calculated accordingly. Extracting root mean square, standard deviation, skewness, and form factor feature parameters in the statistical domain, and then the fusion of the time domain and statistical domain feature parameters during arcing is selected by the method of mutual information, and the voltage standard deviation,voltage root mean square, average arcing power, and the arcing energy feature parameters are selected and used as inputs to the gate recurrent unit(GRU), temporal convolutional network(TCN), improved TCN prediction models to complete the prediction task. By comparing the fitting degree of the prediction results of the three models with the actual electric lifetime values of AC contactors and the evaluation indexes of the prediction results, it is obtained that the prediction results of the improved TCN model have a higher fitting degree with the actual electric life values, higher prediction accuracy, and the best performance among the three models.
Key words: AC contactor; electrical lifetime; wavelet transform; improved TCN model; mutual information
参考文献
[1] 李奎,段宇,黄少坡,等. 基于 Wiener 过程的交流接触器剩余电寿命预测[J] . 中国电机工程学报,2018,38(13) :3978-3986.
[2] 赵成晨,李奎,胡博凯,等. 变应力条件下低压断路器剩余电寿命预测[J] . 中国电机工程学报,2022,42(21) :8004-8015.
[3] 成庶,陈日升,向超群. 基于触头燃弧损耗的动车组交流接触器剩余电寿命预测[J] . 铁道科学与工程学报,2024,21(10) :3978-3988.
[4] 马飞越,李澳,吴诚威,等. 基于 LSTM-MIV 神经网络的 SF6 断路器触头电寿命预测[J] . 高压电器,2024,60(2) :69-77.
[5] 邢朝健,刘树鑫,高书豫,等. 基于数据增强 SDAE-BiGRU 的交流接触器剩余电寿命预测[J]. 高电压技术,2024,50(11) :4990-5004.
[6] 李雪岭. 基于 BP 神经网络的交流接触器电寿命预测[D].天津:河北工业大学,2015.
[7] 王振宇,向泽锐,支锦亦. 离散小波变换和自编码器耦合的脑电信号异常检测方法[J] . 北京邮电大学学报,2024,47(2) :66-73.
[8] 郭娇. 开关类设备寿命预测方法研究[D]. 北京:北京交通大学,2020.
[9] 李岩峰. 基于动态神经网络的接触器寿命预测模型研究[D]. 沈阳:沈阳工业大学,2021.
[10] 张婧,曹峰,董毓莹,等. 基于互信息和遗传算法的特征选择算法[J] . 山西大学学报(自然科学版),2024,47(1) :1-8.
[11] 佟敏,史昌明,马善为,等. 基于互信息参数优化 BP 神经网络的生物质发电量预测研究[J]. 中国农机化学报,2023,44(2) :126-131.
[12] 冯俊磊,吕卫东,段雪艳,等. 基于模态分解和 TCN-BiLSTM 的风电功率预测[J] . 电子测量技术,2024,47(14) :49-56.
[13] 王印松,吕率豪. 基于改进时间卷积网络的微电网超短期负荷预测[J]. 太阳能学报,2024,45(6) :255-263.
[14] 杨鑫源,范传光,叶佳锐,等. 基于 TCN-Attention 模型的电力负荷短期概率预测方法[J] . 供用电,2025,42(4) :91-98.
[15] 王金玉,金宏哲,王海生,等.ISSA 优化 Attention 双向 LSTM 的短期电力负荷预测[J]. 电力系统及其自动化学报,2022,34(5) :111-117.
[16] 董宏丽,孙桐,王闯,等. 基于门控注意网络模型的天然气管道泄漏检测新方法[J] . 天然气工业,2025,45(1) :25-36.