Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于CEEMDAN-ISSA-BiLSTM的风电功率组合预测模型

来源:电工电气发布时间:2023-11-10 10:10 浏览次数:304

基于CEEMDAN-ISSA-BiLSTM的风电功率组合预测模型

童宇轩1,金超2,李灿3
(1 新能源电力系统国家重点实验室(华北电力大学),北京 102206;
2 河海大学 能源与电气学院,江苏 南京 211100;
3 南京工程学院 电力工程学院,江苏 南京 211167)
 
    摘 要:针对风电功率存在间歇性、非线性和波动性而难以准确预测的问题,提出一种遵循“序列分解-网络预测-序列重构”的风电功率预测模型。针对风电场集群中的不同风电机组出力特性曲线,使用迭代自组织数据分析聚类算法 (ISODATA) 聚类得到典型出力曲线;利用自适应噪声完全集成经验模态分解 (CEEMDAN) 算法对聚类得到的原始风电序列数据进行模态分解,减少数据波动所带来的预测误差;建立各模态分量的双向长短期记忆网络 (BiLSTM) 预测模型,并使用改进麻雀搜索算法 (ISSA) 优化网络参数,再将各模态分量的预测结果叠加得到风电功率的最终预测结果。算例结果表明,所提预测模型的预测精度相比其他对比模型更高,且有着更好的泛化能力。
    关键词: 风电功率预测;自适应噪声完全集成经验模态分解;双向长短期记忆网络;改进麻雀搜索算法
    中图分类号:TM614     文献标识码:A     文章编号:1007-3175(2023)11-0026-07
 
Wind Power Combination Prediction Model Based on
CEEMDAN-ISSA-BiLSTM
 
TONG Yu-xuan1, JIN Chao2, LI Can3
(1 State Key Laboratory of Alternate Electrical Power System with Renewable Energy
Sources (North China Electric Power University), Beijing 102206, China;
2 College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;
3 School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
 
    Abstract: To solve the problem that wind power is difficult to predict accurately due to intermittent and nonlinear fluctuations, a wind power prediction model based on“sequence decomposition-network prediction-sequence reconstruction”is proposed. First, according to the output characteristic curves of various wind turbines in wind farm clusters, the typical output curves are obtained through Iterative Self Organizing Data Analysis Techniques Algorithm (ISODATA) clustering algorithm. Then, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is used to decompose the original wind power series data obtained by clustering to reduce the prediction error caused by data fluctuation. Third, the Bi-directional Long Short-Term Memory (BiLSTM) prediction model of each modal component is established, the Improved Sparrow Search Algorithm (ISSA) is used to optimize the network parameters, and the final prediction result of wind power is obtained by superimposing the prediction results of each modal component. The numerical results show that the prediction accuracy of the proposed model is higher than that of other models, and it has better generalization ability.
    Key words: wind power prediction; complete ensemble empirical mode decomposition with adaptive noise; bi-directional long short-term memory; improved sparrow search algorithm
 
参考文献
[1] 张智刚,康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J] . 中国电机工程学报,2022,42(8) :2806-2818.
[2] 鲁宗相,林弋莎,乔颖,等. 极高比例可再生能源电力系统的灵活性供需平衡[J] . 电力系统自动化,2022,46(16) :3-16.
[3] 王绍敏,王守相,赵倩宇,等. 基于频域分解和精度加权集成的分布式风电功率预测方法[J] . 电力建设,2023,44(5) :84-93.
[4] 王渝红,史云翔,周旭,等. 基于时间模式注意力机制的 BiLSTM 多风电机组超短期功率预测[J]. 高电压技术,2022,48(5) :1884-1892.
[5] 陈玺. 基于 ISSA-LSTM 的超短期风电功率预测[D].银川:宁夏大学,2022.
[6] 王顺. 基于物理- 数据融合的风电功率组合预测方法研究[D]. 沈阳:沈阳工业大学,2022.
[7] 冉靖,张智刚,梁志峰,等. 风电场风速和发电功率预测方法综述[J] . 数理统计与管理,2020,39(6) :1045-1059.
[8] 王燕. 时间序列分析——基于R [M] . 北京:中国人民大学出版社,2015.
[9] 陈昊,高山,王玉荣,等. 基于广义自回归条件异方差偏度峰度模型的风电功率预测方法[J] . 中国电机工程学报,2017,37(12) :3456-3461.
[10] 邹金,朱继忠,赖旭,等. 基于时空自回归移动平均模型的风电出力序列模拟[J] . 电力系统自动化,2019,43(3) :101-107.
[11] 朱乔木,李弘毅,王子琪,等. 基于长短期记忆网络的风电场发电功率超短期预测[J] . 电网技术,2017,41(12) :3797-3802.
[12] 杨子民,彭小圣,郎建勋,等. 基于集群动态划分与 BLSTM 深度学习的风电集群短期功率预测[J] .高电压技术,2021,47(4) :1195-1203.
[13] ORESHKIN B N, CARPOV D, CHAPADOS N, et al.NBEATS: Neural basis expansion analysis for interpretable time series forecasting[C]//International Conference on Learning Representations, Millennium Hall, Addis Ababa, Ethiopia,2020.
[14] 张雲钦,程起泽,蒋文杰,等. 基于 EMD-PCA-LSTM 的光伏功率预测模型[J]. 太阳能学报,2021,42(9) :62-69.
[15] LIU H, TIAN H G, LI Y F.Comparison of new hybrid FEEMD-MLP , FEEMD-ANFIS,Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions[J].Energy Conversion and Management,2015,89(1) :1-11.
[16] 彭秀艳,张彪. 基于 EMD-PSO-LSTM 组合模型的船舶运动姿态预测[J] . 中国惯性技术学报,2019,27(4) :421-426.
[17] 张辰睿. 基于机器学习的短期电力负荷预测和负荷曲线聚类研究[D]. 杭州:浙江大学,2021.
[18] 王维高,魏云冰,滕旭东. 基于 VMD-SSA-LSSVM 的短期风电预测[J] . 太阳能学报,2023,44(3) :204-211.
[19] 王金玉,金宏哲,王海生,等.ISSA 优化 Attention 双向 LSTM 的短期电力负荷预测[J]. 电力系统及其自动化学报,2022,34(5) :111-117.