考虑气象因素的PCA-BP神经网络短期负荷预测
王海峰,姜雲腾,李萍
(宁夏大学 物理与电子电气工程学院,宁夏 银川 750021)
摘 要:为有效提高电力系统短期负荷预测精度及效率,提出一种基于主成分分析的BP神经网络短期负荷预测优化算法。利用主成分分析法将多个原始变量降维成少数彼此独立的变量作为输入,并根据各主成分的贡献率来确定网络的结构,有效解决BP网络预测精度与效率不高问题。在考虑气象因素的影响下通过对某地区历史负荷数据进行训练仿真,平均预测精度接近98%,预测程序运行效率提高两倍以上,仿真结果表明,该模型在效率和预测精度方面优于BP神经网络模型。
关键词:主成分分析;负荷预测;BP 神经网络
中图分类号:TM715 文献标识码:A 文章编号:1007-3175(2018)07-0038-04
Short-Term Load Forecasting Based on Principal Component Analysis-Back
Propagation Neural Network Considering Meteorological Factor
WANG Hai-feng, JANG Yun-teng, LI Ping
(School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China)
Abstract: In order to effectively improve the accuracy and efficiency of short-term load forecasting, this paper proposed a back propagation(BP) neural network short-term load forecasting optimization algorithm based on the principal component analysis. The principal component analysis method was used to reduce a number of original variables into a few independent variables as input, and to determine the network structure according to the contribution rate of the main components, and effectively solve the problem of low prediction accuracy and efficiency of BP network. Taking the influence of meteorological factors into consideration, the results of training and simulation of historical load data in a certain area show that the average prediction accuracy is close to 98%, which is more than two times of the running efficiency of the forecast program. The simulation results show that the model is superior to the BP neural network model in efficiency and prediction accuracy.
Key words: principal component analysis; load forecasting; back propagation neural network
参考文献
[1] 廖旎焕,胡智宏,马莹莹,等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制,2011,39(1) :147-152.
[2] 吕跃春,邵常宁,刘欣宇,等. 粒子群优化BP神经网络在短期负荷预测误差修正模型中的应用研究[J]. 电气应用,2015,34(5) :28-32.
[3] 张奔,史沛然,蒋超. 气象因素对京津唐电网夏季负荷特性影响分析[J]. 电力自动化设备,2013,33(12) :140-144.
[4] 李培强,李慧,李欣然. 基于灵敏度与相关性的综合负荷模型参数优化辨识策略[J]. 电工技术学报,2016,31(16) :181-188
[5] 李龙,魏靖,黎灿兵,等. 基于人工神经网络的负荷模型预测[J]. 电工技术学报,2015,30(8) :225-230.
[6] 杜莉,张建军. 神经网络在电力负荷预测中的应用研究[J]. 计算机仿真,2015,30(8) :225-230.
[7] 隋惠惠. 基于BP神经网络的短期电力负荷预测的研究[D]. 哈尔滨:哈尔滨工业大学,2015.
[8] 许童羽,马艺铭,曹英丽,等. 基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测[J]. 电力系统保护与控制,2016,44(22) :90-95.