参考文献
[1] 梁智,孙国强,李虎成. 基于 VMD 与 PSO 优化深度信念网络的短期负荷预测[J] . 电网技术,2018,42(2):598-606.
[2] KIN J, CHO S, KO K, et al.Short-Term Electric Load Prediction Using Multiple Linear Regression Method[C]//2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids,2018.
[3] LI Hong, ZHAO Yang, ZHANG Zizi, et al.Shortterm load forecasting based on the grid method and the time series fuzzy load forecasting method[C]//International Conference on Renewable Power Generation,2015.
[4] 陈磊,张青云,向晓,等. 改进灰色预测模型在电力负荷预测中的应用[J] . 河北电力技术,2021,40(6):27-30.
[5] SHARMA S, MAJUMDAR A, ELVIRA V, et al.Blind Kalman Filtering for Short-Term Load Forecasting[J].IEEE Transactions on Power Systems,2020,35(6):4916-4919.
[6] 谭风雷,张军,马宏忠. 基于趋势变化分段的电力负荷组合预测方法[J] . 华北电力大学学报,2020,47(2):17-24.
[7] YANG Wangwang, SHI Jing, LI Shujian, et al.A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior[J].Applied Energy,2022,307(C) :S0306261921014665.
[8] JALALI S M J, AHMADIAN S, KHOSRAVI A, et al.A Novel Evolutionary-Based Deep Convolutional Neural Network Model for Intelligent Load Forecasting[J].IEEE Transactions on Industrial Informatics,2021,PP(99) :1.
[9] ZHU Fuyun, WU Guoqing.Load Forecasting of the Power System: An Investigation Based on the Method of Random Forest Regression[J].Energy Engineering,2021,118(6) :1703-1712.
[10] LI Gen, LI Yunhua, ROOZITALAB Farzad.Midterm Load Forecasting: A Multistep Approach Based on Phase Space Reconstruction and Support Vector Machine[J].IEEE Systems Journal,2020,14(4) :4967-4977.
[11] 邓春红,王蒙. 基于相似日和灰色理论的短期电力负荷预测研究[J] . 重庆工商大学学报( 自然科学版),2017,34(3):93-97.
[12] 王瑞,孙忆枫,逯静. 基于相似日和 RBF 神经网络的短期电力负荷预测[J] . 制造业自动化,2021,43(4):24-29.
[13] JANKOVI Z, SELAKOV A, BEKUT D, et al.Day similarity metric model for short-term load forecasting supported by PSO and artificial neural network[J].Electrical Engineering,2021,103(1) :2973-2988.
[14] DING Jianmin, YUE Yunli, CHEN Jianhua, et al.Analysis of Factors Affecting Power Load Characteristics Based on Grey Relational Analysis Model [C]//2019 International Conference on Sensing , Diagnostics ,Prognostics, and Control(SDPC),2020.
[15] 刘亚珲,赵倩. 基于聚类经验模态分解的 CNN-LSTM 超短期电力负荷预测[J] . 电网技术,2021,45(11):4444-4451.
[16] RAFI S H, MASOOD Nahid-Al, DEEBA S R, et al.A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network[J].IEEE Access,2021,9:32436-32448.
[17] 刘可真,阮俊枭,赵现平,等. 基于麻雀搜索优化的 Attention-GRU 短期负荷预测方法[J]. 电力系统及其自动化学报,2022,34(4) :99-106.